Quotient rule and chain-rule.
Q1. Compute the derivative of x^{-h} and x^{α} (n is positive integer and α is real number)

Quotient rule:

$$
\left(x^{-n}\right)^{\prime}=\left(\frac{1}{x^{n}}\right)^{\prime}=\frac{(1)^{\prime} x^{n}-1 \cdot\left(x^{n}\right)^{\prime}}{x^{2 n}}=\frac{0 \cdot x^{n}-n x^{n-1}}{x^{2 n}}=-n x^{-(n+1)}
$$

Chain-rule:

$$
x^{\alpha}=e^{\ln x^{\alpha}}=e^{\alpha \ln x}
$$

set $f(x)=e^{x}, g(x)=\alpha \ln x$, so $x^{\alpha}=f \circ g(x)$

$$
\left(x^{\alpha}\right)^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)=e^{\alpha \ln x} \cdot \alpha \frac{1}{x}=x^{\alpha} \cdot \alpha \cdot x^{-1}=\alpha x^{\alpha-1}
$$

Q2. (1) $f(x)=\ln \left(x+\sqrt{1+x^{2}}\right) ;$; $) f(x)=\tan \frac{21}{x}$.
(1) $f(x)=\ln \left(x+\sqrt{1+x^{2}}\right)$
set $g(x)=\ln x, \quad h(x)=x+\sqrt{1+x^{2}}$

$$
f^{\prime}(x)=(g \circ h(x))^{\prime}=g^{\prime}(h(x)) \cdot h^{\prime}(x)=\frac{1}{x+\sqrt{1+x^{2}}}\left(1+\frac{1}{2} \frac{2 x}{\sqrt{1+x^{2}}}\right)=\frac{1}{\sqrt{1+x^{2}}}
$$

(2) $f(x)=\tan ^{2} \frac{1}{x}$
$\operatorname{set} g(x)=x^{2}, h(x)=\tan x, m(x)=\frac{1}{x}$,

$$
\begin{aligned}
f^{\prime}(x) & =(g \circ h \circ m(x))^{\prime}=g^{\prime}\left(h(m(x)) h^{\prime}(m(x)) m^{\prime}(x)\right. \\
& =2\left(\tan \frac{1}{x}\right) \cdot(\tan x)^{\prime}\left(-\frac{1}{x^{2}}\right)=-2 \tan \frac{1}{x} \sec ^{2} \frac{1}{x} \cdot \frac{1}{x^{2}}
\end{aligned}
$$

for $\tan x$, we use quotient rule:

$$
(\tan x)^{\prime}=\left(\frac{\sin x}{\cos x}\right)^{\prime}=\frac{\cos x \cdot \cos x-\sin (1-\sin x)}{\cos ^{2} x}=\frac{1}{\cos ^{2} x}=\sec ^{2} x
$$

similarly we have $\left\{\begin{array}{l}(\sec x)^{\prime}=\sec x \tan x \\ (\cot x)^{\prime}=-\frac{1}{\sin ^{2} x}=-\csc ^{2} x \\ (\csc x)^{\prime}=-\csc x \cot x .\end{array}\right.$
(x). (1) $f(x)-y(1+y(x)) ;(2) f(x)-y(x y(x))$
(1) Set $h(x)=x+g(x)$

$$
f^{\prime}(x)=(g \circ h(x))^{\prime}=g^{\prime}(x+g(x)) \cdot\left(1+g^{\prime}(x)\right)
$$

(2)

$$
\begin{aligned}
& \text { set } h(x)=x g(x) \\
& f^{\prime}(x)=(g o h(x))^{\prime}=g^{\prime}(x g(x))\left(g(x)+x g^{\prime}(x)\right)
\end{aligned}
$$

A concrete example may like set $g(x)=\sin x$.
So for (1) $f(x)=\sin (x+\sin x)$
then $f^{\prime}(x)=\cos (x+\sin x) \cdot(1+\cos x)$
for (2) $f(x)=\sin (x \sin x)$

$$
f^{\prime}(x)=\cos (x \sin x) \cdot(\sin x+x \cdot \cos x)
$$

Q4. $y=\frac{(x+5)^{2}(x-4)^{\frac{1}{3}}}{(x+2)^{5}(x+4)^{\frac{1}{2}}} \quad(x>4)$, compute y^{\prime}
For such complex function, we need use the "In "function to make it simpler. like:

$$
\begin{aligned}
\ln y=\ln \frac{(x+5)^{2}(x-4)^{\frac{1}{3}}}{(x+2)^{5}(x+4)^{\frac{1}{2}}} & =\ln (x+5)^{2}(x-4)^{\frac{1}{3}}-\ln (x+2)^{5}(x+4)^{\frac{1}{2}} \\
& =2 \ln (x+5)+\frac{1}{3} \ln (x-4)-5 \ln (x+2)-\frac{1}{2} \ln (x+4)
\end{aligned}
$$

then do the differential both sides.

$$
\begin{aligned}
& (L H S)^{\prime}=(\ln y)^{\prime}=\frac{1}{y} \cdot y^{\prime} \quad \text { (chain-rule) } \\
& (\text { RHS })^{\prime}=\frac{2}{x+5}+\frac{1}{3} \frac{1}{x-4}-\frac{5}{x+2}-\frac{1}{2(x+4)}
\end{aligned}
$$

so $y^{\prime}=y$.(1) where $y=\frac{(x+5)^{2}(x-4)^{\frac{1}{3}}}{(x+2)^{5}(x+4)^{\frac{1}{2}}}$

Q5. For the general form $u(x)^{v(x)}$, also use "In "function. and chain-rule.

$$
\begin{aligned}
u(x)^{v(x)} & =e^{\ln u(x)^{v(x)}}=e^{v(x) \ln u(x)} \\
\left(u(x)^{v(x)}\right)^{\prime} & =\left(e^{v(x) \ln u(x)}\right)^{\prime}=e^{v(x) \cdot \ln (u(x))} \cdot(v(x) \cdot \ln u(x))^{\prime} \\
& =u(x)^{v(x)}\left(v^{\prime}(x) \ln u(x)+v(x) \cdot \frac{1}{u(x)} u^{\prime}(x)\right)
\end{aligned}
$$

Q6. (1) $x^{\sin x}$;
(2) $x^{x^{x}}$
(1) just an application of $Q 5, u(x)=x, v(x)=\sin x$

$$
\left(x^{\sin (x)}\right)^{\prime}=x^{\sin x}\left(\cos x \cdot \ln x+\sin x \cdot \frac{1}{x}\right)
$$

(2) $x^{x^{x}}$, use "In" function.

$$
y=x^{x^{x}} \Rightarrow \ln y=\ln x^{x^{x}}=x^{x} \ln x
$$

still have x^{x} term, use "In" once more

$$
\ln (\ln y)=\ln x^{x}+\ln (\ln x)=x \ln x+\ln (\ln x)
$$

differential both sides:

$$
\begin{aligned}
& \frac{1}{\ln y} \cdot \frac{1}{y} \cdot y^{\prime}=\left(1 \cdot \ln x+x \cdot \frac{1}{x}\right)+\frac{1}{\ln x} \cdot \frac{1}{x}=\ln x+1+\frac{1}{x \ln x} \\
\Rightarrow & y^{\prime}=\ln y \cdot y\left(\ln x+1+\frac{1}{x \ln x}\right)=x^{x} \cdot x^{x^{x}} \cdot\left(\ln x+1+\frac{1}{x \ln x}\right)
\end{aligned}
$$

Tutorial 5. Min.Jie jmin@math.cuhte. edu.nt.
Compute derivative using
(1) product rule

$$
(f(x) \cdot g(x))^{\prime}=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)
$$

(2) quotient rule

$$
\left(\frac{f(x)}{g(x)}\right)^{\prime}=\frac{f^{\prime}(x) \cdot g(x)-f(x) \cdot g^{\prime}(x)}{(g(x))^{2}}
$$

(3) Chain rule

$$
(f(g(x)))^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

Examples: (1) $f(x)=\frac{x^{2}+1}{x+1}$
use quotient rule:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\left(x^{2}+1\right)^{\prime}(x+1)-\left(x^{2}+1\right)(x+1)^{\prime}}{(x+1)^{2}}=\frac{2 x(x+1)-\left(x^{2}+1\right)}{(x+1)^{2}} \\
& =\frac{x^{2}+2 x-1}{x^{2}+2 x+1}
\end{aligned}
$$

(2)

$$
\begin{aligned}
f(x) & =3 \cdot \sec x-\tan x \\
f^{\prime}(x) & =3 \cdot\left(\frac{1}{\cos ^{2} x}\right)^{\prime}-\left(\frac{\sin x}{\cos x}\right)^{\prime} \quad \text { (use quotient rule) } \\
& =3 \cdot \frac{1 \cos x-(-\sin x)}{\cos ^{2} x}-\frac{\cos ^{2} x-\sin x(-\sin x)}{\cos ^{2} x} \\
& =3 \cdot \frac{\sin x}{\cos ^{2} x}-\frac{1}{\cos ^{2} x}=\frac{3 \sin x-1}{\cos ^{2} x}
\end{aligned}
$$

(3)

$$
\begin{aligned}
f(x) & =\ln (\ln x) \\
f^{\prime}(x) & =\ln ^{\prime}(\ln x) \cdot(\ln x)^{\prime} \quad \text { use chain rule } \\
& =\frac{1}{\ln x} \cdot \frac{1}{x}
\end{aligned}
$$

(4) $\quad f(x)=3^{x}$

If there is x in the power, say $f(x)^{g|x|}$ usually write it as $e^{g(x) \ln f(x))}$

$$
\begin{aligned}
& f(x)=3^{x}=e^{x \ln 3} \\
& f^{\prime}(x)=\left(e^{x \ln 3}\right)^{\prime}=e^{x \ln 3} \cdot(x \ln 3)^{\prime}=e^{x \ln 3} \cdot \ln 3=3^{x} \ln 3
\end{aligned}
$$

use chain rule
(5)

$$
\begin{aligned}
f(x) & =x^{x}=e^{x \ln x} \\
f^{\prime}(x) & =\left(e^{x \ln x}\right)^{\prime} \quad \text { use chain rule } \\
& =e^{x \ln x}(x \ln x)^{\prime} \quad \text { use product rule } \\
& =e^{x \ln x}\left(x^{\prime} \ln x+x(\ln x)^{\prime}\right) \\
& =e^{x \ln x}(\ln x+1) \\
& =x^{x}(\ln x+1)
\end{aligned}
$$

Exercises: compute following derivatives:
(1) $f(x)=\ln \left(x+\sqrt{1+x^{2}}\right)$
(2) $f(x)=x^{\sqrt{x}}$
(3) $f(x)=\frac{\tan x}{\sqrt{x}}$
(4) (Final 2005-06) $f(x)=x^{n}(x-1)^{n}, n, m$ are natural numbers find $c \in(0,1)$ sit. $f^{\prime}(c)=0$

Soln : (1) $f^{\prime}(x)=\frac{1}{x+\sqrt{1+x^{2}}} \cdot\left(1+\frac{1}{2}\left(1+x^{2}\right)^{-\frac{1}{2}} \cdot(2 x)\right)$

$$
\begin{aligned}
& =\frac{1}{x+\sqrt{1+x^{2}}}\left(1+\frac{x}{\sqrt{1+x^{2}}}\right) \\
& =\frac{1}{x+\sqrt{1+x^{2}}} \frac{\sqrt{1+x^{2}}+x}{\sqrt{1+x^{2}}}=\frac{1}{\sqrt{1+x^{2}}}
\end{aligned}
$$

(2)

$$
\begin{aligned}
f(x) & =x^{\sqrt{x}}=e^{\sqrt{x} \ln x} \\
f^{\prime}(x) & =e^{\sqrt{x} \ln x}(\sqrt{x} \ln x)^{\prime}=e^{\sqrt{x} \ln x}\left(\frac{1}{2 \sqrt{x}} \ln x+\frac{\sqrt{x}}{x}\right) \\
& =x^{\sqrt{x}} \frac{\ln x+2}{2 \sqrt{x}}
\end{aligned}
$$

(3)

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(\tan x) \sqrt{x}-\frac{1}{2 \sqrt{x}} \tan x}{x}=\frac{\frac{\sqrt{x}}{\cos ^{2} x}-\frac{\tan x}{2 \sqrt{x}}}{x} \\
& =\frac{1}{\sqrt{x} \cos ^{2} x}-\frac{\tan x}{2 x \sqrt{x}}
\end{aligned}
$$

(4) (1) if $n, m \geqslant 1$, then.

$$
\begin{aligned}
f^{\prime}(x) & =n x^{n-1}(x-1)^{m}+m x^{n}(x-1)^{m-1} \\
& =x^{n-1}(x-1)^{m-1}(n(x-1)+m x)=0
\end{aligned}
$$

Sinu $x \neq 0, x \neq 1$, so $x=\frac{n}{m+n}$
(2) if either $n=0$, or $m=0$, then. there is no solin.
$[$ Math 1010 C$]$
$9 / 10 / 2014$
Thitorial-5
Giang Glingyuan
$\left\{\right.$ - Poof. Mung: $\max \left\{Q_{1}, Q_{2}\right\}$ instead of Q_{1};

- Homework-2.
- Curve sketching; ($f^{\prime}(x) \geqslant 0 \Leftrightarrow$ increasing:

Pan I: Questions about Homework-2?
Possible ones:
Assign-2,5| Find $\frac{d y}{d x}$ if $y=x|\sin x|$;
Solution): when $x \in(2 k \pi,(2 k+1) \pi)$.

$$
\begin{aligned}
& y=x \sin x \\
& \frac{d y}{d x}=\sin x+x \cos x
\end{aligned}
$$

- when $x \in((2 k+1) \pi, 2 k \pi), \quad k \in \mathbb{Z}$

$$
\begin{aligned}
& y=-x \sin x ; \\
& \quad \frac{d y}{d x}=-\sin x-x \cos x ;
\end{aligned}
$$

What happens when $x=2 k \pi$ or $x=(2 k+1) \pi$?

- When $x=2 k \pi, \lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}$ should be computed sep. for (70) 位

$$
\begin{align*}
& \Delta x>0 \& \Delta x<0 \text { : } \\
& \lim _{\Delta x \rightarrow 0^{+}} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0^{+}} \frac{(2 k \pi+\Delta x) \sin (2 k \pi+\Delta x)}{\Delta x}=\lim _{\Delta x \rightarrow 0^{+}} \frac{(2 k \pi+a) \sin \Delta x}{\Delta x} \tag{<0}\\
& =2 k \pi \text {, } \\
& =-2 k \pi \text {; } \\
& \pm 2 k \pi \text { unless } \\
& \text { Hence }\left.\frac{d y}{d x}\right|_{x=0}=0,\left.\quad \frac{d y}{d x}\right|_{x=2 k \pi} \frac{\text { does not exist!!! }}{\text { for } k+0, k \in \mathbb{Z}} \text {. }
\end{align*}
$$

- When $x=(2,2+1) \pi$, similarly,

$$
\lim _{\Delta x \rightarrow 0^{+}} \frac{\Delta y}{\Delta x}=-(2 k+1) \pi . \quad \lim _{\Delta x \rightarrow 0^{-}} \frac{\Delta y}{\Delta x}=(2 k+1) \pi \neq-(2 k+1) \pi
$$

Heme $\left.\frac{d y}{d x}\right|_{x=(0 \forall * 1) \pi}$ does not exist for $\forall k \in Z!!$
$6 f(x)=\left\{\begin{array}{lll}x^{2} \sin \left(\frac{1}{x}\right), & x \neq 0 & f^{\prime}(x) \text { exists } \forall x \in \mathbb{R}, \\ 0 & x=0 . & \text { fut not ant. at } x=0 .\end{array}\right.$
Solution:

$$
\lim _{\substack{x \rightarrow 0 \\(x \not 0)}} f(x)=\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)=0, \quad \sin c e \quad\left|\sin \left(\frac{1}{x}\right)\right| \leqslant 1
$$

\Rightarrow fins is cont. at $x=0$;

- $f^{\prime}(x)$ for $x \neq 0$:

$$
\begin{aligned}
f^{\prime}(x) & =\left(x^{2} \sin \left(\frac{1}{x}\right)\right)^{\prime}=2 x \sin \left(\frac{1}{x}\right)+ \\
& x^{2} \cdot\left(-\frac{1}{x^{2}}\right) \cos \left(\frac{1}{x}\right) \\
& =\frac{2 x \sin \left(\frac{1}{x}\right)-\cos \left(\frac{1}{x}\right)}{\text { for } x \neq 0}
\end{aligned}
$$

- $f^{\prime}(0)$: M definition of derivatives,

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{x^{2} \sin \left(\frac{1}{x}\right)-0}{x-0} \\
= & \lim _{x \rightarrow 0} x \cdot \sin \left(\frac{1}{x}\right)=0, \quad \text { since }\left|\sin \left(\frac{1}{x}\right)\right| \leqslant 1 ;
\end{aligned}
$$

$\Rightarrow f^{\prime}(0)$ exists. \& $f^{\prime}(0)=0$;

How dearly $f^{\prime}(x)$ exists for $\forall x \in \mathbb{R}$:

$$
f^{\prime}(x)= \begin{cases}2 x \sin \left(\frac{1}{x}\right)-\cos \left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x=0 ;\end{cases}
$$

fut $\left.\lim _{\substack{x \rightarrow 0 \\(x \rightarrow 0)}} f^{\prime}(x)=\lim _{x \rightarrow 0} \frac{\left(2 x \sin \left(\frac{1}{x}\right)\right.}{\frac{\downarrow}{x}}-\frac{\cos \left(\frac{1}{x}\right)}{\frac{1}{x}}\right)$ does not exist!

$\Rightarrow f^{\prime}(x)$ is not continous at $x=0$. (!)

MATH1010 University Mathematics 2014-2015
Assignment 2
Due: 3 Oct 2013 (Friday)

Assignment 2 (due date: 3
Oct. (Friday))
From MATH 1010A
webpage.
(Inserted Here For
Reference Only.)

Answer all questions.

1. Evaluate the following limits.
(a) $\lim _{x \rightarrow 4} \frac{x^{2}-16}{x^{2}-2 x-8}$
(d) $\lim _{x \rightarrow 0} \frac{1}{x}\left(\frac{1}{\sqrt{1-x}}-\frac{1}{\sqrt{1+x}}\right)$
(b) $\lim _{x \rightarrow 3} \frac{\sqrt{x+6}-3}{x^{3}-27}$
(e) $\lim _{x \rightarrow 0} \frac{\tan ^{2} x}{\sin \left(x^{2}\right)}$
(c) $\lim _{x \rightarrow 4} \frac{8-x^{\frac{3}{2}}}{16-x^{2}}$
(f) $\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{1-\sqrt{\cos x}}$
2. Let $f(x)$ be a function. Prove that if $\lim _{x \rightarrow a}|f(x)|=0$, then $\lim _{x \rightarrow a} f(x)=0$.
3. Use definition to evaluate the derivatives of the following functions.
(a) $y=\frac{3}{x^{2}}$
(b) $y=2 \sqrt{x}-1$
4. Find $\frac{d y}{d x}$ if
(a) $y=x^{4} \cos 5 x$
(d) $y=\frac{x}{\sqrt{x^{2}+1}}$
(g) $y=\cos \left(\frac{1}{\cosh x}\right)$
(b) $y=\frac{e^{-x}}{\sqrt{x}}$
(e) $y=\sec ^{2} x$
(h) $y=\sqrt{\frac{1+\sin x}{1-\sin x}}$
(c) $y=e^{\sin 3 x}$
(f) $y=\ln \left(2+\sin \left(x^{2}+1\right)\right)$
(i) $y=\ln \left(\ln \left(x^{4}+1\right)\right)$
5. Find $\frac{d y}{d x}$ if $y=x|\sin x|$.
6. This exercise shows that the derivative of a function may not be continuous. Let

$$
f(x)= \begin{cases}x^{2} \sin \left(\frac{1}{x}\right), & \text { when } x \neq 0 \\ 0, & \text { when } x=0\end{cases}
$$

(a) Show that $f(x)$ is continuous at $x=0$.
(b) Find $f^{\prime}(x)$ for $x \neq 0$.
(c) Show that $f(x)$ is differentiable at $x=0$ by evaluating $f^{\prime}(0)$.
(d) Explain whether $f^{\prime}(x)$ is continuous at $x=0$.

[^0]
End

Part I Curve sketching
Good Reference：M．Fikhtengol＇s，＂Differential and lateral Calculus＂，Volume I．chapter 4，\＆3．（ln Russian） （Chinese version：T．M．菲赫金哥尔茨，微积分学教程，（第8版），）高等教育出版社，第一卷，第四章 豹，函数的乍图。 Online access available at OUHK library webpage：just search 9！！

$$
\frac{\text { Pule no.1 }}{f \in c[a, b]}:\left\{\begin{array}{l}
f^{\prime}(x)>0 \Longrightarrow \text { increasing } \\
f^{\prime}(x)<0 \Longrightarrow \text { decreasing } \\
f^{\prime}\left(x_{0}\right)=0 \Longleftrightarrow x_{0}(a, b) \& x_{0} \text { is max or min }: \\
f(x) \\
\end{array}\right.
$$

＂Stationary $p t " \Rightarrow x_{0}$ is potential max or min point． us need further examination：

paves（ohm）：If $f^{\prime}\left(x_{0}\right)=0$ ，\＆$f^{\prime}\left(x_{0}\right)<0$ for $x<x_{0}$ ，

$$
f^{\prime}(x)>0 \text { for } x>x_{0} \text {, }
$$

then $x=x_{0}$ is a（boor）min；
If $f^{\prime}\left(x_{0}\right)=0, \& \quad f^{\prime}(x)>0$ for $x<x_{0}$ ，

$$
f^{\prime}(x)<0 \text { for } x>x_{0} \text {, }
$$

then $x=x_{0}$ is a（local）max；
Rules（time）：If $f \in C^{2}[a, b], x_{0} \in(a, b)$ ：

$$
\left\{\begin{array}{l}
f^{\prime}\left(x_{0}\right)=0, f^{\prime \prime}\left(x_{0}\right)>0 \Rightarrow x=x_{0} \text { le. min; } \\
-f^{\prime}\left(x_{1}\right)=0, f^{\prime \prime}\left(x_{0}\right)<0 \Rightarrow x=x_{0} \text { ex. max }
\end{array}\right.
$$

Pule no.2: $f^{\prime \prime}(x)$ (second derivatives; ie. derivative of $f^{\prime}(x)$).

point!
\leftrightarrow suspect point of where convexity charges:
$\omega \rightarrow$ need father goo examination:
2.g $f(x)=x^{4}$

(a)

(b) convexity charges
(c) convent does not change.

Convex function)
Defin: if continuous fin on $[a, b]$; f is called convex if

$$
\begin{aligned}
& \forall a \leq x_{1}<x_{2} \leq b, \quad f\left(\frac{x_{1}+x_{2}}{2}\right) \leqslant \frac{f\left(x_{1}\right)+f\left(x_{2}\right)}{2} ; \frac{f\left(x_{1}+f\left(x_{2}\right)\right.}{2} \\
& \text { called concave if } \\
& a \leq x_{1}<x_{2} \leq b, \quad f\left(\frac{x_{1}+x_{2}}{2} \geqslant \frac{f\left(x_{1}\right)+f\left(x_{2}\right)}{2} ; \quad f\left(x_{1}\right)\right. \\
& x_{1} \frac{x_{1}+x_{2}}{2} x_{2}
\end{aligned}
$$

(Cover function continoned). For of is cont. fin on $[a, b]$. TFAE
(i) f is convex:
(The Following the Equivicen)
(ii) $\forall a \leq x_{1}<x_{2} \leq b, \quad \& \quad \alpha, \beta \in(0,1), \quad \alpha+\beta=1$.

$$
f\left(\alpha x_{1}+\beta x_{2}\right) \leqslant \alpha f\left(x_{1}\right)+\beta f\left(x_{2}\right)
$$

When $f \in C^{2}[a, b]$, ie. $f^{\prime \prime}(x)$ exists $\forall x \in(a, b)$, \& cont. then $(i, i i) \Leftrightarrow$
(iii) $f^{\prime \prime}(x) \geqslant 0, \quad \forall x \in(a, b)$.

Example -1. $f(x)=x^{3}-3 x$;

$$
\begin{aligned}
(\cdot f(x)=0 & \Leftrightarrow x=0 r x= \pm \sqrt{3} ;) \\
\cdot f^{\prime}(x) & =3 x^{2}-3=3(x-1)(x+1) ; \\
x=1, & f(1)=-2 ; \\
x & =-1, f(x)=2 ;
\end{aligned}
$$

$$
\text { - } f^{\prime \prime}(x)=6 x ; \quad f^{\prime \prime}(x)=0 \Leftrightarrow x=0 \text {; }
$$

list all ciffomation in a box:

Example 2 (Fikhtengol's (447] 2).) $\quad y=\sin x+\sin 2 x$;
observe: y is periodic, ar period 2π; \& y is odd ω need only to sketch in interval $[0, \pi]$.

Row:

$$
\begin{aligned}
y^{\prime} & =\cos x+2 \sin 2 x=4 \cos ^{2} x+\cos x-2 \\
& =4\left(\cos x+\frac{1+\sqrt{33}}{8}\right)\left(\cos x-\frac{1+\sqrt{33}}{8}\right)
\end{aligned}
$$

when $\cos x=\frac{4 \pm \sqrt{33}}{8}, \quad y^{\prime}=0$.
i.e. $\quad x \approx 0.94\left(54^{\circ}\right)$ end $\approx 2.57\left(167^{\circ}\right)$.

$$
y^{\prime \prime}=-\sin x-4 \sin 2 x=-\sin x(1+8 \cos x)
$$

when $x \approx 0.94, y^{\prime \prime}<0 \Rightarrow$ loo. max;

$$
x \approx 2.57, \quad y^{\prime \prime}>0 \Rightarrow \text { floc. } \min \text {; }
$$

$$
y^{\prime \prime}=0 \Leftrightarrow x=0, \pi \quad x=\pi, \Omega \quad \underbrace{1+8 \cos x=0}_{\pi}
$$

inflection point. $\quad x \approx 1.70\left(97^{\circ}\right)$.
List

Example 3 (Fikhtengol's [136] 13, $[49]$ 3))

$$
y=(x+2)^{2}(x-1)^{3}
$$

$$
\text { - } \begin{aligned}
& y^{\prime}=2(x+2)(x-1)^{3}+3(x+2)^{2}(x-1)^{2}=(x+2)(x-1)^{2}(5 x+4) \\
& y^{\prime}=0 \Longleftrightarrow \text { stationary point } \quad x_{1}=-2, \quad x_{2}=-\frac{4}{5}, \quad x_{3}=1
\end{aligned}
$$

- $y^{\prime \prime}$ défriz rule

$$
\begin{aligned}
& 2(x-1)\left(10 x^{2}+16 x+1\right) \\
& y^{\prime \prime}\left(x_{1}=-2\right)=\cdots<0, \quad y^{\prime \prime}\left(x_{2}=-\frac{4}{5}\right)=\cdots>0, \quad \frac{y^{\prime \prime}\left(x_{3}\right)=0}{1} \\
& \text { en. max } \quad \text { eve. min }
\end{aligned}
$$

eve. min doit brow yet!

$$
y^{\prime \prime}=0 \Longleftrightarrow \quad x=1,-0.07,-1.53
$$

List atone information

Tutorial 5
Topics: Quotient rule \& Chain rule.

Questions: Evaluate the first derivatives of the function:
Quotient rule :
(a) $\frac{\sin (x)}{e^{x}}$
16) $\frac{1}{3 x^{2}+2 x+1}$
ic) $\frac{\ln x}{\sqrt{x}}$
Chain rule: $2 a) \sin \left(x^{6}\right)$
2b) $2^{\left(x^{2}\right)}$
ac) $\frac{1}{3}(\sqrt{x}+1)^{3}+\frac{1}{2}(\sqrt{x}+1)^{2}+(\sqrt{x}+1)$
2d) $e^{(\ln x)^{3}}$

Recall:
Suppose $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are differentiable functions.

- Quotient rule: $\left(\frac{f}{g}\right)^{\prime}=\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{g(x)^{2}}$
- Chain rule: $(f \circ g)^{\prime}=\frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) g^{\prime}(x)$.

Soln $Q \mid a)$

$$
\begin{aligned}
& \frac{d}{d x}\left(\frac{\sin x}{e^{x}}\right)=\frac{e^{x} \frac{d}{d x} \sin x-\sin x \frac{d}{d x} e^{x}}{\left(e^{x}\right)^{2}} \\
& =\frac{e^{x} \cos x-e^{x} \sin x}{e^{2 x}}=\frac{\cos x-\sin x}{e^{x}}
\end{aligned}
$$

(b)

$$
\begin{gathered}
\frac{d}{d x}\left(\frac{1}{3 x^{2}+2 x+1}\right)=\frac{-\frac{d}{d x}\left(3 x^{2}+2 x+1\right)}{\left(3 x^{2}+2 x+1\right)^{2}} \\
=\frac{6 x+2}{\left(3 x^{2}+2 x+1\right)^{2}}
\end{gathered}
$$

Q|c)

$$
\begin{aligned}
& \frac{d}{d x}\left(\frac{\ln (x)}{\sqrt{x}}\right)=\frac{\sqrt{x} \frac{d}{d x} \ln x-\ln x \frac{d}{d x} \sqrt{x}}{(\sqrt{x})^{2}}, \text { for } x>0 \\
& =\frac{1}{x}\left(\frac{\sqrt{x}}{x}-\frac{\ln x}{2 \sqrt{x}}\right)=\frac{2-\ln x}{x \sqrt{x}}
\end{aligned}
$$

2a) $\frac{d}{d x} \sin \left(x^{6}\right)=\left(\left.\frac{d}{d u}\right|_{u=x^{6}} \sin (u)\right)\left(\frac{d}{d x} x^{6}\right)=6 x^{5} \sin \left(x^{6}\right)$
b)

$$
\begin{aligned}
\frac{d}{d x} 2^{\left(x^{2}\right)} & =\frac{d}{d x}\left(e^{x^{2} \ln 2}\right)=\left(\left.\frac{d}{d u}\right|_{u=x^{2} \ln 2} e^{u}\right)\left(\frac{d}{d x} x^{2} \ln 2\right) \\
& =\left(e^{x^{2} \ln 2}\right)(2 x \ln 2)=2^{x^{2}} \ln 2^{2 x}
\end{aligned}
$$

2c)

$$
\begin{aligned}
& \frac{d}{d x}\left(\frac{1}{3}(\sqrt{x}+1)^{3}+\frac{1}{2}(\sqrt{x}+1)^{2}+\sqrt{x}+1\right) \\
= & {\left[\left.\frac{d}{d u}\right|_{u=\sqrt{x}+1}\left(\frac{u^{3}}{3}+\frac{u^{2}}{2}+u\right)\right]\left[\frac{d}{d x}(\sqrt{x}+1)\right] } \\
= & \left((\sqrt{x}+1)^{2}+(\sqrt{x}+1)+1\right)\left(\frac{1}{2 \sqrt{x}}\right) \\
= & \frac{\sqrt{x}}{2}+\frac{3}{2}+\frac{3}{2 \sqrt{x}}
\end{aligned}
$$

2d)

$$
\begin{aligned}
& \frac{d}{d x} e^{(\ln x)^{3}}=\left(\left.\frac{d}{d u}\right|_{u=(\ln x)^{3}} e^{u}\right)\left(\frac{d}{d x}(\ln x)^{3}\right) \\
& =\left(\left.\frac{d}{d u}\right|_{u=(\ln x)^{3}} e^{u}\right)\left(\left.\frac{d}{d v}\right|_{v=\ln x} v^{3}\right)\left(\frac{d}{d x} \ln x\right) \\
& =\left(e^{(\ln x)^{3}}\right)\left(3(\ln x)^{2}\right)\left(\frac{1}{x}\right) \\
& =\frac{3}{x}(\ln x)^{2} e^{(\ln x)^{3}}
\end{aligned}
$$

[^0]: Assignment 2 (due date: 3
 Oct. (Friday))
 From MATH 1010A
 webpage.
 (Inserted Here For
 Reference Only.)

